
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4418

National
Computer
Systems

Laboratory

State Occupancy
Information for

Performance
Comparisons

Gordon E. Lyon

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

National Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

October 1990

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

Partially sponsored by the Defense Advanced

Research Projects Agency





State Occupancy Information
for Performance Comparisons

GJE. Lyon

Advanced Systems Division

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

• Sponsored in part by the Defense Advanced Research Projects Agency.

Text of 12 October 1990.

U.S. Department of Commerce, Robert A. Mosbacher, Secretary

National Institute of Standards and Technology

John W. Lyons, Director

October 1990





TABLE OF CONTENTS

Page

Performance Characterization via State Occupancies 2

Comparison with Related Work 2

Other Representations 3

States and Macrostates 3

Local State Information 6

Measuring or Estimating 7

Mean Node Occupancies and Three Hypercube Paradigms 7

Discussion and Results 8

Problems in the Data 9

Estimators and Modeling 9

On a Real System 10

Local State Information from Amorphous Systems 10

Summary and Conclusion 1

1

Conclusion 12

Citations 12

-iii-





State Occupancy Information
for Performance Comparisons

G.E. Lyon

A state-based performance characterization attaches fixed processing rates to each

service state. However, the number of states can be large. Over time, the sequences of such

states are enormous. Counts of active (hut interchangeable) system elements define

macrostates, which are fewer. Furthermore, only the occupancy levels of macrostates are

recorded. This removes time sequencings as a combinatoric problem, but still captures

general performance details. Applications can be compared independently of their

algorithmic structures.

The hypercube and other distributed-memory systems bring both opportunities and

challenges to a state-based approach. Certainly, processor and communication activities are

more easily identified and more independent with distributed-memory than with shared-

memory. But isolated nodes also entail problems in capturing global observation states.

However, hypercube application codes are commonly homogeneous across nodes, so that

aggregating local state information works well. Three paradigms illustrate homogeneous

applications with communication dependencies that are strong (global), moderate flocal), or

weak (independent once spawned). The three performance summaries are accurate and

extremely compact.

Key words: application comparisons; distributed-memory; performance; system states.

Users want accurately to compare general performances of applications on newer computer

architectures. They want this without the tremendous complications of algorithmic structures or explicit

time. Benefits of such an approach are clear: users save time and reduce risks of bad program-architecture

matching; they build insight on the system needs of classes of programs; their overall picture of

computations is simpler. Certainly, a simplified perspective of applications on a system encourages

comparisons among them. Since all programs on a system use its common and available resources, a

characterization at the system-resource level can support application comparisons.

The discussion assumes that collection accuracy is not a problem, even though on parallel processing

systems, measurement perturbation can cause severe distortions in performance behavior. Measurements

cause insignificant perturbation on the example system, which has custom hardware

instrumentation [MCNR90] . The results indicate that in many circumstances the burden of

instrumentation may be surprisingly light

A contribution of the National Institute of Standards and Technology. Not subject to copyright. No recommendation or

endorsement, express or otherwise, is given by the National Institute of Standards and Technology or any sponsor for any illustrative

commercial items in the text Partially sponsored by the Defense Advanced Research Projects Agency, ARPA Task No. 7066.

- 1 -



Performance Characterization via State Occupancies

The programmer doing algorithm measurements and comparisons is constantly reminded that there

are many distinct algorithms. And, while computer systems are potentially as varied as the programmed
applications that run on them, few computer designs are actually built This fact serves nicely to limit

discourse. Keeping a focus upon real systems, the following approach is used:

1. Decompose each system into major service states that determine general performance. A given

class of machines is treated as having but a limited set of dominant states, each state denoting

afixed, set of processing capacities (rates).

2. View each application as a set of demands upon system service capacities (rates), with a

specific application demand signified by an accumulative occupancy in the corresponding

system state.

3. Build and interpret models based upon observed state occupancies and the associated rates.

The idea of observing service states enjoys simple but powerful advantages. The entire state space of

responses is described. This space is closed, rather than open, and thus checks the resolution and

consistency of measurements. Changes to input lead only to a redistribution of occupancies among service

states. There arise no completely new behaviors. As a result, state-based measurement has structure. The

fineness and number of the observation states hinge upon the resolution needed to explain system

performances as input varies. Specific challenges include the need to ensure that states are succinctly

defined and recorded, to manage a large number of states as parallel systems scale up in number of

processors, and to compress state representations as systems do scale in size. Averages from local state

information fall in the last category, and are discussed later for homogeneous codes on a (homogeneous)

hypercube.

Comparison with Related Work

Recent workshop discussions with R. Saavedra-Barrara (U. CA.) and E. Miya (NASA) highlight

differences in methodology (see table, below) between their efforts and the above

approach [LYO90, SSM89]. First, they initiate application characterization at the language level—

FORTRAN; their model (now) has 113 specific parameters, which reduce to perhaps 14 or more general

factors [SSM89]. Their virtual FORTRAN machine model invites problems in performance variance

acquired through layers of construction [LS90]. The model’s level of abstraction is perhaps too high. In

contrast, service states at a system-level characterization may generate only 4-10 parameters. (Later

examples use four.) Hardware developed at NIST captures service state occupancies for our experiments;

our group’s advantage in making specialized instrumentation is pronounced. However, many

instrumentations make only modest demands, such as a fast clock and several timer registers on each

processor node. Secondly, the Berkeley-NASA researchers choose their dependent variables principally

as statistical predictors on mostly serial machines, whereas our NIST observables are tied to true system

states (actually, macrostates) and are 100% measured. On parallel architectures this difference can be

very significant For example, program communication latencies are much easier to measure (NIST

approach) than to predict (Berkeley-NASA). Also, a state-based model has a formal structure that can be

manipulated to advantage [LY089]. Both approaches rely upon accumulative effects (e.g., time measured

-2-



overall) to remove the combinatorics of sequences (e.g., states in time).

Category

Approach

Berkeley-NASA [SSM89] NIST [LY089, LS90]

Objective compare and contrast

architectures via standard

FORTRAN virtual machine

(includes applications

)

compare applications concisely

via major service states

appropriate for each architec-

tural family

Application Treatment static: analyze source dynamic: instrument, execute

Host Treatment run "kernel" benchmarks

to establish parameters

special measurement hardware

captures information

Modeling Effort complex : includes compiler

actions, system behavior

simple if have well-

chosen state variables

Everyday

Use

easy, automatic easy: system service statistics

harder: specialized application data

Added Hardware none custom instrumentation

Support Software customizedfor each system

component (compiler , scheduler,...)

standard packages

Philosophy Bias analytical empirical

Contrast in Approaches

Other Representations. States present another issue, that of practical representation. State tables shown

in sequel are such that every attribute (column) appears in every state (row). However, when a column has

little effect on most states (rows), it is convenient to select all unaffected rows, and to project a new

subtable that eliminates the column. Repeated applications eventually yield many small subtables, none of

which is complete in itself. Under these circumstances, a dependency tree works considerably better-it

succinctly displays isolated clusters of interaction that leave other states essentially

unaffected [LY089, LS90]. However, in the context to follow, a table format is adequate.

States and Macrostates

Discussion of states and their role proceeds via a simple example. This should cause no loss of

generality. Imagine a parallel system ABCD with four (p =4) processors: a, b, c, and d. The architecture

for ABCD remains for the moment unspecified. At any time, each processor is attributed to one of three

(m = 3) major modes, A
lf
A 2 , or A 3 . A concise description of system ABCD at time f

t
is given as the

microstate

^2 a 3 Rate

tf- a b c d r.(a, be, d)

Microstate signifies that the detail of individual system elements is recorded. Rate r* 0 provides values for

processor a in A
x , b and c in A 2 , and d in A 3 . This fully characterizes the performance of ABCD at time r,.

Table T1 shows a time trace of ABCD microstates. Time is defined by fields index, for order of microstate

-3 -



occurrence, and Duration
,
for length of stay. The symbol "0" denotes the empty set

index A
i

A 2 Aj Duration Rate

1 abed 0 0 3 r*(abcd, 0, 0)
2 ac d b 0 1 r.(acd, b, 0)
3 ab d c 0 2 r.(abd, c, 0)
4 ac d 0 b 1 r*(acd, 0, b)

5 abed 0 0 1 r*(abcd, 0, 0)
6 ab c d 0 5 r.(ab, cd, 0)
7 c d ab 0 5 r

*

(cd, ab, 0)
8 ac bd 0 5 /••(ac, bd, 0)
9 0 abed 0 1 r*(0, abed, 0)
10 abed 0 0 2 r*(abcd, 0, 0)
11 a bed 0 2 r. (a, bed, 0)
12 0 abc d 1 r* (0, abc, d)

Tl: System ABCD Time Trace, Microstates

Microstates often contain much unnecessary detail. If ABCD is a good general-purpose design, all

processing nodes likely have the same interconnect, the same processor chip, and the same memory
architecture. (It simplifies manufacture, programming and maintenance.) Since no component is

distinguished, counts of processors in a mode are what matter. Thus, the earlier microstate example

A\ A 2 a 3 Rate

n- a be d r* (a, be, d)

becomes the macrostate

1 2 1 * 1 . 2 , 1 )

Table T2 shows that converting Tl to macrostates produces some adjacent rows that are identical except

for index and duration. (Rows 2-3 and 6-8.) These groupings can be merged, adding their durations

together. Rate r now takes integer arguments, rather than the sets of r.

.

index ^1 A 2 ^3 Duration Rate

1 4 0 0 3 *4,0,0)

2,3 3 1 0 3 *3,1,0)

4 3 0 1 1 *3,0, 1)

5 4 0 0 1 *4,0,0)

6,7,8 2 2 0 15 *2,2,0)

9 0 4 0 1 *0,4,0)

10 4 0 0 2 *4,0,0)

11 1 3 0 2 *1,3,0)

12 0 3 1 1 *0, 3, 1)

T2: System ABCD Time Trace, Macrostates

-4-



The next simplification introduces macrostate occupancy, in contrast to sequences of macrostates

in time. Selecting all T2 rows, project T2 on all columns except index. Excluding Duration, entries in the

new table (T3) with duplicate fields merge into single rows, their Duration fields summing for a new

Occupancy field. Now, while the set of macrostate sequences is infinite, macrostates for ABCD with

p =4, m =3 are [FEL64]:

p +m-\ 6'

. P 4

The transformation to occupancies removes explicit time and the complications of algorithmic

sequencings from the performance characterization. Useful remaining aspects of the application code

include its independent variables and their settings during performance experiments. The result is table

T3. (T3 does not show settings of the independent variables that generated it)

^2 ^3 Occupancy Rate

4 0 0 6 r(4, 0, 0)

3 1 0 3 r(3, 1, 0)

3 0 1 1 r(3, 0, 1)

2 2 0 15 r(2, 2, 0)

0 4 0 1 r(0, 4, 0)

1 3 0 2 r(l,3,0)

0 3 1 1 r(0, 3, 1)

T3: System ABCD Occupancies, Macrostates ofA
1
A 2A 3

In T4 (below), all rows of T3 have been selected. A projection on A\ also sums the occupancies of

duplicate rows. As an example, T3 entries

Ai ^2 ^3 Occupancy Rate

0 4 0 1 r(0, 4, 0)

0 3 1 1 r(0, 3, 1)

become an entry

A
!

Occupancy Rate

in table T4. The transformation assumes either A 2 and A 3 are inconsequential to gross system

performance and are ignored, or that their information is implicit in values taken by r
: ( ). Ai is commonly

level-of-parallelism for many parallel system analyses.

-5 -



^1 Occupancy Rate

4 6 r i(4)

3 4 r i(3)

2 15 r i<2)

1 2 r id)
0 2 r i(0)

T4: System Occupancies, Macrostates ofA
j

Further compressions of state information are often necessary. For despite simplifications already

introduced, the number of macrostates (expressed by the binomial coefficient) grows swiftly as systems

scale up in processors. Often, a continuous function can be fit to give a compact approximation to a given

attribute (column entries). The best-known example is probably the Hockney-Jesshope vector rate of

n(n) = r,

n
associated with attribute Aj = vector length

, n. As mentioned earlier, the practical

representation of states is a somewhat distinct topic. See [LS90] for examples.

Local State Information. A more serious problem arises when immediate global knowledge of

processors or other node activity is lacking (each column proclaims a known global level of activity for its

attribute). Precise global timing is often not available on distributed systems. (Our NIST-instrumented

iPSC-1 does global timings.) An obvious approach is to examine homogeneous collections of nodes-

those identical in hardware and in assigned software tasks. This is not unrealistic, for most applications on

hypercubes and related architectures are regular problem domains attacked via code replicated across

nodes [FJL88]. The regularity of hypercube architecture invites such solutions. Observations made

independently at each node are averaged together. Overall application consumption of system time is

recorded at detail levels appropriate for nodes of the machine. The approach scales well, thereby

matching a strength of the architecture. Performance results are given as an ideal (or mean) performance

on one node. For example ABCD, mean occupancies in Aj, A 2 , and A 3 are available by calculation from

previous tables. For A
i
of table T4 there is a mean node occupancy of

— *6 + —*4 + — *15 + ~*2 = 17
4 4 4 4

In practice occupancy times are collected separately at each node and then averaged. The result is the

same, but unlike using table T3 or T4, no global information is used until the final averaging.

Instrumentation collection demands are consequently much lighter. Attributes Aj take only the values 0

and 1. Let 0,(1) denote the occupancy time of A, at value 1. Total elapsed time T is

T = o^l) + 02 ( 1 ) + 0 3 (1), since a node of system ABCD is always in one (and only one) of the A,.

Consequently, T - 0,(1) = 0,(0), and only the 0,(1) need be recorded. Averaging across nodes for means:

*i(l) o 2 ( 1) *3 (1)

17.0 11.5 0.5

T5: Mean Node Occupancies for A
i ,
A 2,

A 3

-6-



Measuring or Estimating. Simple reasoning about states leads to the above. While measurements taken

at one randomly selected node could also establish occupancy estimates, these entail more uncertainty:

Overall service is estimated , based upon the chosen node being fully representative. Measuring the

full application service by summing local measurements ensures that incidental variations among nodes

have much diminished influences. Consequently, one role of any line of argument is to show what system

state details have been lost or preserved, and at what cost As for mean node occupancies (e.g., in T5).

homogeneous applications occur frequently enough to render the approach worthwhile

provided that it is accurate. Three general examples provide evidence that it is.

Mean Node Occupancies and Three Hypercube Paradigms

The experiments with local states involve our NIST specially-instrumented iPSC-1 Hypercube

system. A choice of three synthetic communication benchmarks underscores that (i) iPSC-1 node

performance is relatively simple, and (ii) inter-node communication is a dominant performance factor.

The benchmarks explore points along a spectrum of communication interdependencies [LY089b]. In

Raridom ,
tasks proceed independently once each is spawned. Radiation transport has this property. Mesh

simulates locally-dependent processes typical of fluid models. Ring has each node dependent upon all

others for the next time-step calculation. Molecular dynamics might approach this global level of process

dependency. The analysis yields a fresh look at original data gathered in 1989 by R. Snelick [SNE89' to

the following specifications:

Application Paradigms

Bl--Random B2—Mesh B3-Ring

Distinct Trial

Parameter Sets 60 75 75

Range, Elapsed Times 8.4-202 s 4.2—146 s 3.1-789 s

Independent Variables

exit rate, e

nodes, n

packets/ms g, p
grain, g

Ranges

75-225

4-16

fixed (1)

200-1000

of Independent V

na.

9-16

1-16

20-100

anables

na
4-16

1-16

20-100

Specifications for Benchmark Trials [from SNE89]

There are m =4 dependent variables (observables) that identify- critical states of each node:

communication interrupt service (/), remainder of system service and user-mode (U), message-sending [S),

and message-receiving (R). These are the A,. (An iPSC-1 node has no separate communication processor.

While further details of node state would be informative (such as synchronous or asynchronous

communication), the four rudimentary states are quite serviceable. Our 16 processor system has 16

corresponding instrumentation boards that capture node state information.

-7-



Mean node state occupancies for 7, S, R, and U are recorded along with the independent parameter

settings. For example, Ring 's independent parameters are n, p, and g. These respectively denote the

number of nodes, packets per message, and computational grain, i.e., DO-loop iterations per message

datum. Trials for Ring are each recorded as:

Independent Variables Dependent Variables (Observables)

n P 8 Oi(V*I o 2(l>S oi(l)=R &A•'T

lo

Records for Mesh are the same as for Ring. Random omits /?, which is fixed at one packet per message, and

introduces e, the exit rate. The exit rate controls how often a message is sent to another randomly-chosen

node. Each such message contains some workload specification (again a random amount). While the

benchmarks B1-B3 can be compared solely on the basis of state occupancies established from one run per

benchmark, the common independent variables (e , n, p, g) support a far broader range of evaluations.

Consequently, each benchmark code is run with numerous parameter settings.

Discussion and Results

The 210 (60 + 75 + 75) trial data records have been reduced to a compact tableau (shown below) of

four equations per paradigm. An excellent compression of 840 raw measurements (210 trials * 4 states)

has been made into 12 short, parametric equations (3 paradigms * 4 states). The reduction is 70:1 for

measurement records to equations, a clear demonstration of the efficacy of the state-based approach. There

is a moderate but deliberate loss of accuracy. Since tolerances of ±20% are not unusual in everyday

software experience, statistical analyses of residual terms were terminated near this tolerance. The

number of equations per benchmark corresponds to the number of system states. Tighter tolerances add

further terms to the equations, but neither this nor additional data affect the number of equations.

Mean node states /, S, R, U, and their occupancy estimators lend structure to the table. Columns

sum to elapsed application time. Rows provide comparisons among benchmarks for a selected state. For

example, scaling the system up in nodes, n, shortens receive times, /?, for B1 and B2 but lengthens B3’s.

Because the applications share several independent parameters, their equations each generate

response surfaces that can be compared in varying degrees. The surfaces help determine the suitability of

benchmarking regions. Certainly parameter settings are suspect when they lie near singularities in the

surfaces.

In general, parameter sets of two distinct benchmarks may vary widely. Benchmarks whose

parameter sets relate as strictly monotone are easily compared (as here), since a unique mapping from one

set of parameter values to the other is ensured. The chosen family, B1-B3, was designed from the start to

explore system communication parameters, so parameter commonality is not accidental. A weaker

relationship between parameter sets indicates algorithms with less common structure. Some parametric

dimensions may lack mutual meaning. Even among the tailored set, parameter e is unique to Bl. An
ad hoc assemblage of benchmarks may have no significant parameter relationships, a fact that weakens its

utility. What benchmarks always share are the performance states for the system of interest. Occupancy

signatures, at least, lie on the same system dimensions. In worst case, a summary is a table of static

numerical entries, rather than a tableau of dynamic parametric equations. Yet, even the static table has

considerably more consistency and detail than the usual benchmark results.

-8 -



iPSC Application Paradigms

States B1-Random B2—Mesh B3—Ring

Comm. Intrpt., I 0.00227 - + 0.040
n

0.952 2. + 0.010
n

0.00760 pn + 0.0660

Send, S 0.0013 1L+J- - 0.0188
n

2.40 2. + 0.333
n

0.0114/7 +0.067

Receive, R 22.6
8 ~ 100

+ 2.86
ne

0.619 2- + 0.300
n

0.0367 (p +4)n + .296

User, U 0.522 £ + 0.905
n

0.089 pg + 40.0 2.

8
0.0299 png -0.380

Estimator T=I+S+R+U ±15% of measured ± 10% of measured ± 20% of measured

Accuracy, 95% Confidence elapsed time elapsed time elapsed time

Comparing Benchmarks B1-B3 via their State Occupancy Estimators

(sum each columnfor elapsed time)

Problems in the Data. For the three examples, the choice of grain g=0 is unrepresentative of other grain

values. Zero-grained trials have been excluded. Another problem of lesser magnitude is the variation of

performance against mesh node points, n = 9, 12, 16, for Mesh. A plot of residuals for this benchmark

shows that Receive and Interrupts have distinct modalities for different numbers of processors.

Nonetheless, such variations have been omitted as equation terms above because their effects lack

significance. However, identifying sources of uncertainty encourages a more enlightened use of a

benchmark. In particular, sensitive parameters are identified and noted. On new architectures these

parameters should be checked, for the magnitude of their contributions may differ.

Estimators and Modeling. Besides the powerful compression of information, there is real advantage in

having estimator equations that capture benchmark performances via parameters: Their structure supports

broader uses than are typical of conventionally-reported results. Take for example Ring, whose user-time

is a function of grain, g. Grain corresponds to application computation per message packet, so that

conjectures on the effects of a user-state accelerator or improved application code can be couched in terms

of g. The question is natural to a user. Results appear below. The outcome from varying g is consonant

with that obtained from a NIST emulation method; the latter permits variable physical transport speeds on

hypercube communication links [AS90]. In both methods, the balance is changed between compute-speed

and communication-rate. Also with both, those settings of Ring that provide speedup for one case do little

in the other. Although convenient and quick, the benchmark method will not always work, for the

independent variables may be arranged poorly in the equations for certain questions.

-9 -



Relative

Time

1

.75

.5

.25

0

0 2 4 6 8 10 12 14 16

TT —
V
**.

\ communication-intense setting

\

\

t

t

t

V

computation-intense setting

User-Computation Acceleration

Relative Improvements for Ring Program,

Two Distinct Parameter Settings

On a Real System. Everyday use of a computer should be rather removed from the expediencies of

experimental methods on test systems. Instrumentation for a commercial system is certainly more

convenient when it is automatic within the operating system. Application code is then untouched, and

users untroubled by collection details. An operational hypercube system can do this, i.e., it can provide

the utility of local collections (as discussed above) at very little expense to user or system. Process

context-switching presents a major overhead to which measurement instrumentation overhead is only a

small increment. The four iPSC node states /, S, R, and U need a fast system clock and fast registers to

record occupancies. Saved context must support these registers. This is roughly twice as much timing

context (from twice as many states) as that which supports time-sharing statistics, but it is still slight

relative to the overall process context that is saved. The operating system collects and aggregates node

statistics upon termination of a job.

Local State Information from Amorphous Systems

The treatment of state is potentially more difficult whenever there are many system factors, each with

distinct rates. A static layout of a heterogeneous program will then determine a unique set of resource

requests, each of which counts in determining performance variation. Comparabilities among programs

will be difficult, because each will have costs bound strongly to its program structure. The best success is

when disparate applications can have their resource demands reduced to a limited set of common system

resources. However, some recent distributed-memory systems have dynamic allocations. As an example,

the Myrias SPS-2 [PPG90] presents a global view of its address space, with page faults generating fetches

from other processors. Memory space management is transparent to users. Tasks similarly migrate from

one processor to another to improve load balancing. The result is a shifting set of execution costs that is

summarized for a job at any point in time via an estats invocation:

- 10-



estats(l): User System Wait Idle

The items reported are similar to those just seen for the iPSC-1, but factored more conventionally.

System on the Myrias covers aspects of service in the system-state. Wait is time spent awaiting event

completions, e.g., page fetches. Idle records times when both ready and blocked queues are empty;

because a Myrias task is not bound to a processor, it is possible for a processor to have absolutely nothing

scheduled. (The load-balancing mechanism constantly tries to prevent this.) The Myrias estats call

summarizes many variable memory and task costs that would be too complex in detail. Constant "stirring"

by system management removes many concerns about homogeneity or heterogeneity of programs. As

with the homogeneous codes on the iPSC, estats and its statistics scale up with the system.

Summary and Conclusion

A state occupancy view of performance removes time as an overwhelming concern. While transient

behavior not incorporated explicitly into a state is lost, occupancies still capture general performance

details. Emphasis is upon comprehensive results that are nonetheless simply compared. Summaries are

defined by the resolution of the chosen state-space, rather than the amount of collected data.

The challenge of state occupancies is to move effectively from first principles to actual

circumstances. Practical limitations almost always dictate simplifications and approximate methods. This

explicit reconciling of theory to practice also identifies sources of measurement uncertainty and error that

are so often overlooked in benchmarking. Specific issues involve:

• assuring that states are succinctly defined and recorded,

• managing a large number of states as parallel systems scale up in number of processors,

• compressing state representations,

• obtaining global information or circumventing the global state view.

The issues are related one to another. Certainly, the discussions on homogeneous applications and

amorphous systems him at typical tradeoff possibilities. From the system standpoint, trends are toward: (i)

duplicating via VLSI--good because architecture is more uniform; (ii) decentralizing functions-poor for

ascertaining state; (iii) transparent balancing and referencing-good to counter application bindings. This

assessment assumes an instrumentation geared primarily toward time -based samplings. There will be

ample opportunity to break from this mold as systems increasingly employ by -value communications,

rather than the by -reference of shared-memory. As emphasized above, the very philosophy of state

occupancies is to banish as much of time (e.g., state sequences, algorithmic iterations) as possible. The

important correlations identify which resources handle which demand; exact occurrences in absolute time

are immaterial. Consequently, the use of tagged -messages would seem to be a natural matching of the

strengths of distributed systems and the relaxed requirements of state occupancies. The challenge would

be to keep the tagging independent of specific applications. Otherwise, comparisons among applications

would be very limited.

- 11 -



Conclusion. Restricting comparisons among applications to either (i) their signatures of system service,

or (ii) parametric sets of signatures, is far simpler and more readily accessible than detail-by-detail

algorithmic comparisons. Relying principally upon measurement, state occupancies present an attractive

complement to other more analytic and specialized methods.

Citations

[AS90] Antonishek, J.K. and Snelick, R.D. "Emulation through Time Dilation." The Fifth Distr. Memory
CompuL Conf. (DMCC5) Proc., Charleston, SC 1990, 8pp. (1990).

[FEL64] Feller, W. An Introduction to Probability Theory and its Applications, Vol. I. John Wiley &
Sons, New York, 1964, p. 36

[FJL88] Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K., and Walker, D.W. Solving

Problems on Concurrent Processors, Vol. I. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[LS90] Lyon, G.E., and Snelick, R.D. "Workloads, Observables, Benchmarks and Instrumentation." Joint

Int. Conf. on Vector and Parallel Processing Proc., (Springer-Verlag, Sept. 1990, Zurich), 86-97.

[LY089] Lyon, G.E. "Capacity-and-Use Trees for Estimating Computer Performance Variations." Int.

Conf. on Computing and Information Proc., Vol. II, (Canadian Scholar’s Press, May 1989, Toronto),

309-313.

[LY089b] Lyon, G.E. "Design Factors for Parallel Processing Benchmarks." Theoretical Computer

Science 64, (1989), 175-189.

[LYO90] Workshop I: Performance Evaluation and Benchmarks, G.E. Lyon, Organizer. ACM Computer

Architecture Workshops, May 26-27, 1990, Seattle, Washington.

[MCNR90] Mink, A., Carpenter, R., Nacht, G., and Roberts, J. "Multiprocessor Performance-

Measurement Instrumentation." IEEE Computer 23, 9(September 1990), 63-75.

[PPG90] Parallel Programmer’s Guide. Myrias Computer Corporation, February 1990.

[SNE89] Snelick, R.D. NIST—Internal Data File , Summer, 1989 These files summarize several

thousand data points for three communication benchmarks running on the iPSC.

[SSM89] Saavedra-Barrera, R.H., Smith, AJ., and Miya, E. "Machine Characterization Based on an

Abstract High-Level Language Machine." IEEE Trans, on Computers 38, 12(Dec. 1989), 1659-1679.

- 12-



NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. s-W) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATASHEET

1. PUBLICATION OR REPORT NUMBER

NT.QTTP AZil R
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

OCTOBER 1S90
4. TITLE AND SUBTITLE

State Occupancy Information
for

Performance Comparisons
5. AUTHOR(S)

Gordon Lyon
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20699

7. CONTRACT/GRANT NUMBER

S. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CTTY, STATE, ZIP)

Defense Advanced Research Projects Agency-

1400 Wilson Boulevard
Arlington, VA 22209

10.

SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIRS SOFTWARE SUMMARY, IS ATTACHED.

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

A state-based performance characterization attaches fixed processing rates to each service

state. However, the number of states can be large. Over time, the sequences of such states

are enormous. Consequently, counts of active (but interchangeable) system elements define

macrostates, which are fewer. Furthermore, only the occupancy levels of macrostates are

recorded. This removes time sequencings as a combinatoric problem, but still captures

general performance details. Applications can be compared via the method.

The hypercube and other distributed-memory systems bring both opportunities and challenges

to a state-based approach. Certainly processor and communication activities are more easily

identified and more independent with distributed-memory than with shared-memory. But

isolated nodes also entail problems in capturing global observation states. However, many

hypercube application codes are homogeneous across nodes, a fact that makes partial states

quite useful. Three paradigms illustrate homogeneous applications with communication

dependencies that are strong (global) , moderate (local) , or weak (uninhibiting and random)

.

The three performance summaries are compact and accurate.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

applications; comparisons; distributed-memory; occupancies; performance; states
13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNLIMITED 16
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

AO 2

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD. VA 22161.

ELECTRONIC FORM








